
Figure 3: Simulated distributed data network

Background: 
• Distributed regression analysis (DRA) is a privacy-protecting analytic method that performs 

regression analysis with only summary-level data from participating sites (Figure 1)
• Feasibility and utility of DRA have been well documented [1]
• No DRA applications in SAS, the statistical software used by several national distributed data 

networks (DDNs), are available for routine use
• SAS/IML can be used to perform DRA computations, but not all data partners in national 

DDNs have access to SAS/IML, as it is licensed separately from SAS

Objective: To develop a DRA application using only BASE SAS and SAS/STAT modules for use in 
national DDNs
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We used a distributed iteratively reweighted least squares (IRLS) algorithm to perform 
distributed linear and logistic regression analysis and a distributed Newton-Raphson (NR) 
algorithm to perform distributed Cox proportional hazards regression analysis
• Algorithms were implemented using only BASE SAS and SAS/STAT modules
• The main steps in the algorithms include:
o Compute summary data at each data partner (Figure 2)
o Combine site-specific summary data at the analysis center
o Execute PROC REG with SSCP-type input to solve the IRLS/NR system of equations

• A simulated horizontally partitioned DDN of three data partners and an analysis center was
created to test the algorithms (Figure 3)

• PopMedNet, a secure distributed data sharing software, was used to transfer the summary
data in the simulated DDN [1]

We used two different datasets to test the DRA application
• Distributed linear and logistic regression: “Boston Housing data,” included 506 observations 

of medium housing prices and neighborhood characteristics [2]
o Data was randomly partitioned among data partners (n1 = 172, n2 = 182, n3 = 152)
o Outcome: continuous housing price and dichotomized housing price (below or above 

median)
o Covariates: crime, industrialization, and distance to employment centers

• Distributed Cox proportional hazards regression: “Maryland State Prison data,” included 432 
convicts followed for one year post release and baseline characteristics [3] 
o Data randomly partitioned among data partners (n1 = 134, n2 = 149, n3 = 149) 
o Outcome: time to re-incarceration (weeks) 
o Covariates: financial aid, age, and number of prior convictions

METHODS
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• We successfully developed a DRA application using only SAS BASE and SAS/STAT modules
• The application may facilitate the adoption of DRA in national DDNs

• The DRA SAS application produced regression parameter and standard error estimates within 
machine precision to the corresponding pooled patient-level data analyses produced by 
standard SAS procedures (Table 1)
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Figure 1: Distributed regression analysis 

Linear Regression (Boston Housing data)

Covariates

DRA Pooled Patient-Level
Differences in

Parameter Estimates

Differences in

Standard ErrorsEstimates
Standard 

Errors
Estimates

Standard 

Errors

Intercept 35.50548 1.57690 35.50548 1.57690 -8.38E-13 2.26E-14

Crime -0.27283 0.04401 -0.27283 0.04401 4.44E-16 9.92E-16

Distance -1.01582 0.23259 -1.01582 0.23259 1.09E-13 3.22E-15

Industry -0.73017 0.07229 -0.73017 0.07229 3.54E-14 1.32E-15

Logistic Regression (Boston Housing data)

Covariates

DRA Pooled Patient-Level
Differences in

Parameter Estimates

Differences in 

Standard Errors
Estimates

Standard 

Errors Estimates

Standard 

Errors

Intercept 2.49660 0.49057 2.49660 0.49060 1.33E-15 9.99E-16

Crime -0.14465 0.03686 -0.14460 0.03690 2.04E-13 -2.97E-14

Distance -0.14105 0.06976 -0.14100 0.06980 1.38E-14 -2.22E-16

Industry -0.13889 0.02376 -0.13890 0.02380 2.42E-14 1.94E-09

Cox Proportional Hazards Regression (Maryland State Prison data)

Covariates

DRA Pooled Patient-Level
Differences in

Parameter Estimates

Differences in 

Standard ErrorsEstimates
Standard 

Errors
Estimates

Standard 

Errors

Age -0.06692 0.02084 -0.06692 0.02084 -1.39E-16 2.78E-17

Financial Aid -0.34644 0.19024 -0.34644 0.19024 2.22E-16 -2.78E-17

Prior Arrest 0.09653 0.02724 0.09653 0.02724 -1.80E-16 1.73E-17

Table 1: Distributed Regression Analysis (DRA) vs. Pooled 
Patient-Level Regression Analysis 

Figure 2: Summary data example (linear regression)


