

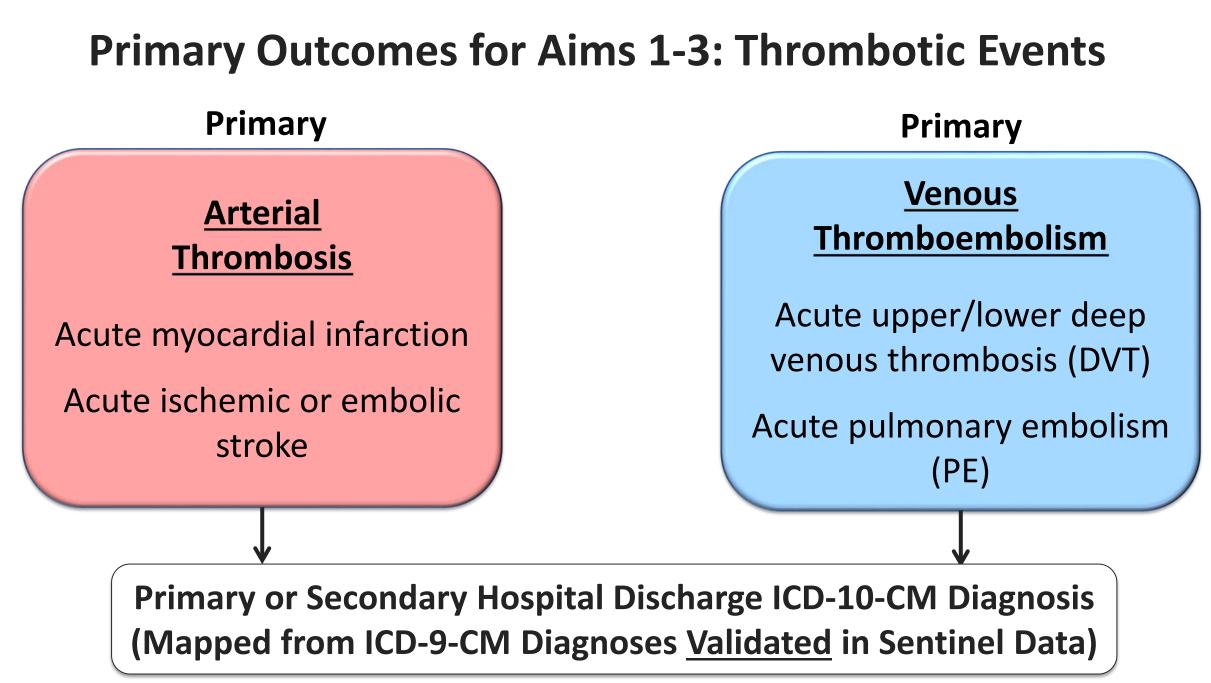
Risk of Arterial/Venous Thrombotic Events with COVID-19: A Sentinel System Investigation – Focus on Endpoints

Vincent Lo Re, MD, MSCE, FISPE

Division of Infectious Diseases, Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania

August 5, 2020

Disclaimer


• This presentation reflects the views of the author and should not be construed to represent FDA's views or policies

Sentinel Coagulopathy Workgroup: Specific Aims

- Aim 1: Determine 90-day incidence of arterial and venous thrombotic events (evaluated separately) with COVID-19 and its consequences.
 - <u>Hypothesis</u>: Events will occur within 90 days of COVID-19 diagnosis and may result in death.
- Aim 2: Evaluate patient characteristics present at COVID-19 diagnosis as risk factors for arterial and venous thrombotic events (evaluated separately).
 - <u>Hypothesis</u>: Characteristics that promote endothelial injury, stasis of circulation, and hypercoagulability will be risk factors for thrombosis.
- Aim 3: Compare 90-day risk of arterial and venous thrombotic events (evaluated separately) between health plan members with COVID-19 and those with influenza.
 - <u>Hypothesis</u>: Risk of thrombotic events will be higher with COVID-19 than influenza.

Sentinel Coagulopathy Workgroup: Specific Aims

- Aim 1: Determine 90-day incidence of arterial and venous thrombotic events (evaluated separately) with COVID-19 and its consequences.
 - <u>Hypothesis</u>: Events will occur within 90 days of COVID-19 diagnosis and may result in death.
- Aim 2: Evaluate patient characteristics present at COVID-19 diagnosis as risk factors for arterial and venous thrombotic events (evaluated separately).
 - <u>Hypothesis</u>: Characteristics that promote endothelial injury, stasis of circulation, and hypercoagulability will be risk factors for thrombosis.
- Aim 3: Compare 90-day risk of arterial and venous thrombotic events (evaluated separately) between health plan members with COVID-19 and those with influenza.
 - <u>Hypothesis</u>: Risk of thrombotic events will be higher with COVID-19 than influenza.

Rationale for Focus on Validated Diagnostic Coding Algorithms

• Minimize misclassification of study outcomes

- Reduce likelihood of biased estimates of associations between exposures and outcomes
- Have confidence that ascertained outcomes = true events

• Validated algorithm \rightarrow majority of events confirmed via medical record review

– Preliminary evaluation indicates similar numbers of events with ICD-10-CM diagnoses

• Algorithm's accuracy may differ by database

- Due to differences in setting, practice approaches, patients, disease incidence
- Algorithms may not be transportable

Validation of Acute MI Algorithms in Sentinel

Setting	ICD-9-CM	Algorithm	Positive Predictive Value % (95% CI)
Mini-Sentinel Distributed Database ¹ HealthCore HMO Research Network Humana Kaiser 	410.x0 410.x1	Hospital Discharge Dx: Primary	86% (79 – 91%)
Sentinel Distributed Database ² • 13 Data Partners	410.x0 410.x1	Hospital Discharge Dx: Primary	93% (78 – 99%)
		Hospital Discharge Dx: Secondary	88% (72 – 97%)

¹ Cutrona SL. *Pharmacoepidemiol Drug Saf* 2013;22:40-54. Validation performed in random sample of members from specified Data Partners. ² Ammann EM. *Pharmacoepidemiol Drug Saf* 2018;27:398-404. Validation performed among members administered immunoglobulin therapy.

Validation of Acute Stroke Algorithms in Sentinel

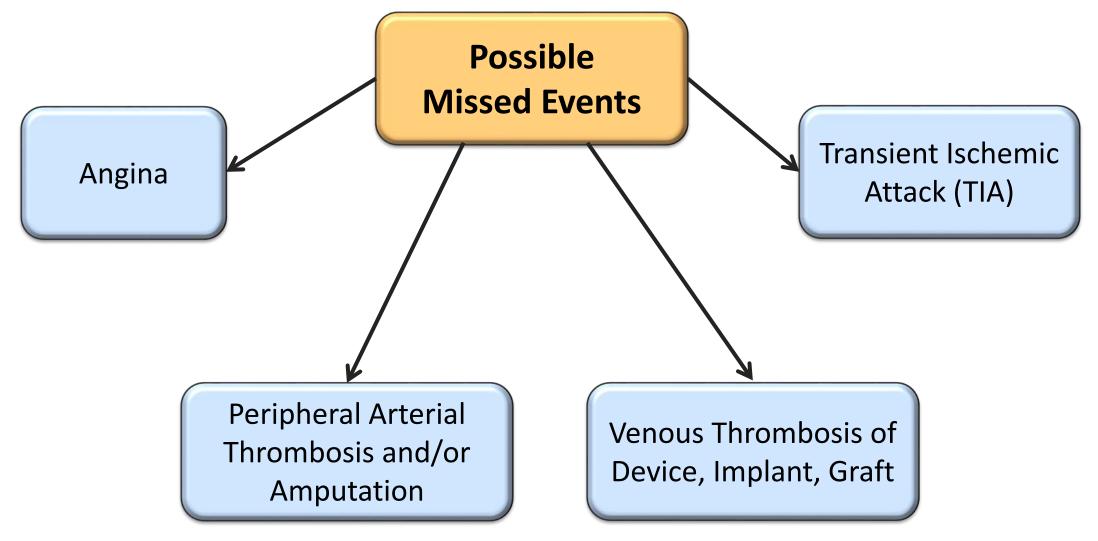
Setting	ICD-9-CM	Algorithm	Positive Predictive Value % (95% CI)
HealthCore ¹	433.x1 434.x1 436.x4 437.1x, 437.9x	Hospital Discharge Dx: Primary	86% (79 – 91%)
TennCare ²	433.x1 434 436	Hospital Discharge Dx: Primary	80% (74 – 85%)
Sentinel Distributed Database ³ • 13 Data Partners	433.x1 434.xx 436	Hospital Discharge Dx: Primary	60% (37 – 84%)
		Hospital Discharge Dx: Secondary	42% (28 – 57%)

¹ Wahl PM. *Pharmacoepidemiol Drug Saf* 2010;19:596-603. Validation performed in members administered selective COX-2 inhibitors or non-OTC NSAIDs.

¹ Roumie CL. *Pharmacoepidemiol Drug Saf* 2008;17:20-26. Validation performed in random sample of TennCare members.

³ Ammann EM. *Medicine* 2018;97:8(e9960). Validation performed among members administered immunoglobulin therapy.

Validation of Acute DVT/PE Algorithms in Sentinel


Setting	ICD-9-CM	Algorithm	Positive Predictive Value % (95% CI)
Mini-Sentinel Distributed Database ¹ Aetna HealthCore Humana Optum TennCare 	415.1x 453.x	Hospital Discharge Dx: Primary or Secondary	65% (95% CI not reported)
Sentinel Distributed Database ² • 13 Data Partners	415.1x 451.1x 453.1, 453.2, 453.4x, 453.9	Hospital Discharge Dx: Primary	90% (73 – 98%)
		Hospital Discharge Dx: Secondary	80% (28 – 99%)

¹ Yih Wk. *Vaccine* 2016;34:172-178. Validation performed among female members aged 9-26 years administered quadrivalent HPV vaccine. ² Ammann EM. *Medicine* 2018;97:8(e9960). Validation performed among members administered immunoglobulin therapy.

Additional Study Outcome Considerations - 1: No Validated Thrombosis Algorithms in COVID-19

- Performance of ICD-10-CM thrombosis algorithms unknown in COVID-19
- Thrombotic events may not be primary hospital discharge diagnosis in COVID-19
 - COVID-19 may be principal hospital discharge diagnosis
 - Arterial, venous thrombotic events may be secondary diagnoses
 - Will need to consider primary or secondary hospital discharge diagnoses
- Clinicians may empirically treat venous thromboembolism with anticoagulation therapy but no confirmatory diagnosis
 - COVID-19 precautions, need for prone positioning limit access to diagnostic imaging

Additional Study Outcome Considerations - 2: Possible Missed Events with Existing Algorithms

Secondary Endpoints Under Consideration

- Primary outcome <u>OR</u> outpatient, ED, or hospital discharge (any position) ICD-10-CM for angina, TIA, peripheral arterial thrombosis, or limb ischemia/amputation
- Primary outcome <u>OR</u> dispensed anticoagulant therapy during follow-up (challenging)
- Bleeding
 - Primary/secondary hospital discharge ICD-10-CM for GI bleed, intracranial bleed, epistaxis
- Death (any cause)
 - Death occurring outside the hospital may be incompletely captured

Acknowledgements

• University of Pennsylvania:

- Dena M. Carbonari, MS
- Sean Hennessy, PharmD, PhD
- Allyson M. Pishko, MD, MSCE

• Sentinel Operations Center:

- Jeffrey Brown, PhD
- Judith Maro, PhD
- Meighan Rogers Driscoll, MPH
- Maria E. Kempner, BA
- Jenice Ko, BS

• US Food & Drug Administration:

- Sara K. Dutcher, PhD
- Silvia Perez-Vilar, PharmD, PhD
- Brian Kit, MD

• Funding source:

- US FDA
 - Contract 75F40119D10037
 - Task order 75F40119F19001