

# Natural History of Coagulopathy in COVID-19

October 23, 2020

Vincent Lo Re, MD, MSCE, FISPE

Division of Infectious Diseases Center for Clinical Epidemiology and Biostatistics Perelman School of Medicine, University of Pennsylvania

On behalf of the FDA Sentinel COVID-19 Coagulopathy Workgroup

# **Need for Real-World Evidence on COVID-19**

#### • Numerous limitations of existing data:

- Bulk of evidence from case reports, series
- Limited sample sizes from single centers
- Inherent biases (selection, misclassification), lack of control of confounders
- Sentinel offers unique opportunity for real-world evidence on COVID-19
  - Epidemiology, natural history of COVID-19
  - Effects of chronic medications taken in ambulatory setting on course of COVID-19
  - Safety, effectiveness of COVID-19 therapies

# **Reports of Abnormalities in Blood Coagulation**

#### • Arterial, venous thrombotic events

- Arterial occlusion (acute MI, ischemic stroke), even at younger ages
- Venous thromboembolism (DVT/PE, microthrombi on autopsy)

#### Coagulopathy

- $\uparrow$  D-dimer, fibrinogen levels
- Disseminated intravascular coagulation

# **Specific Aims**

- Aim 1: Determine 90-day incidence of arterial and venous thrombotic events (evaluated separately) with COVID-19 and risk of death within 90 days of an event.
  - <u>Hypothesis</u>: Events will occur within 90 days of COVID-19 diagnosis and may result in death.

# **Specific Aims**

- Aim 1: Determine 90-day incidence of arterial and venous thrombotic events (evaluated separately) with COVID-19 and risk of death within 90 days of an event.
  - <u>Hypothesis</u>: Events will occur within 90 days of COVID-19 diagnosis and may result in death.
- Aim 2: Evaluate patient characteristics present prior to COVID-19 diagnosis as risk factors for arterial and venous thrombotic events (evaluated separately).
  - <u>Hypothesis</u>: Characteristics that promote endothelial injury, stasis of circulation, and hypercoagulability will be risk factors for thrombosis.

# Potential Risk Factors for Thromboembolic Events in COVID-19 (Aim 2)



# **Specific Aims**

- Aim 1: Determine 90-day incidence of arterial and venous thrombotic events (evaluated separately) with COVID-19 and risk of death within 90 days of an event.
  - <u>Hypothesis</u>: Events will occur within 90 days of COVID-19 diagnosis and may result in death.
- Aim 2: Evaluate patient characteristics present prior to COVID-19 diagnosis as risk factors for arterial and venous thrombotic events (evaluated separately).
  - <u>Hypothesis</u>: Characteristics that promote endothelial injury, stasis of circulation, and hypercoagulability will be risk factors for thrombosis.
- Aim 3: Compare 90-day risk of arterial and venous thrombotic events (evaluated separately) between health plan members with COVID-19 and those with influenza.
  - <u>Hypothesis</u>: Risk of thrombotic events will be higher with COVID-19 than influenza.

# **Significance of Study Aims**

#### **Biological**

- Gain insights into risk factors for thrombotic events with COVID-19
- Determine if risk of events is higher for COVID-19 vs. influenza

#### **Clinical**

- Identify interventions to  $\downarrow$  risk of thrombotic events with COVID-19
- Identify high-risk subgroups to inform decisions, enroll in future trials

#### **Public Health**

 Modifying risk factors for thrombotic events could prevent their development and prolong survival

# **Study Design & Data Source**

- Study design: retrospective cohort study
- Data source: Data Partners from FDA's Sentinel Distributed Data Network
  - Priority data sources: integrated health systems (EHR + claims)
    - Lab data available: COVID-19, influenza, coagulation labs
    - Can identify thrombotic events via outpatient/hospital diagnoses
    - Can determine pre-existing comorbidities, medication exposures at diagnoses
    - Integrated systems minimize missed events
  - Large national insurers (claims)
  - Working with Data Partners to determine feasibility

# Study Patients (Aims 1 & 2)

|                       | Criteria                                                                                                                                                                                                                     |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Inclusion<br>Criteria | <ol> <li>COVID-19 ICD-10-CM diagnosis code or positive nucleic acid test<br/>between April 1, 2020 and 90 days before study end date<sup>*</sup></li> <li>≥365 days of continuous enrollment at time of diagnosis</li> </ol> |
| Exclusion<br>criteria | Initial COVID-19 test result pending or inconclusive at dataset creation                                                                                                                                                     |
| Selection             | All eligible health plan members will be selected                                                                                                                                                                            |

# Study Patients (Aims 1 & 2)



# **Study Patients (Aim 3)**

|                       | COVID-19 Cohort                                                                                                                               | Influenza Cohort                                                                                                       |  |  |  |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Inclusion<br>Criteria | COVID-19 ICD-10-CM diagnosis code<br>or positive nucleic acid test between<br>April 1, 2020 and 90 days before<br>study end date <sup>*</sup> | Influenza A or B ICD-10-CM<br>diagnosis OR positive nucleic acid<br>test between October 1, 2018 and<br>April 30, 2019 |  |  |  |
|                       | ≥365 days of continuous enrollment at time of diagnosis                                                                                       |                                                                                                                        |  |  |  |
| Exclusion             | Initial COVID-19 test result pending<br>or inconclusive at dataset creation                                                                   | Initial influenza result pending or inconclusive at dataset creation                                                   |  |  |  |
| criteria              | Coinfection with other respiratory virus                                                                                                      |                                                                                                                        |  |  |  |
| Selection             | All eligible members will be selected                                                                                                         |                                                                                                                        |  |  |  |

| Study Patients (Aim 3) |                                                                                                                                               |                                                                                                                            | Ensure that influenza patients<br>do not have COVID-19 |  |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--|
|                        | COVID-19 Cohort                                                                                                                               | T                                                                                                                          | nflca Cohort                                           |  |
| Inclusion<br>Criteria  | COVID-19 ICD-10-CM diagnosis code<br>or positive nucleic acid test between<br>April 1, 2020 and 90 days before<br>study end date <sup>*</sup> | e Influenza A or B ICD-10-CM<br>n diagnosis OR positive nucleic acid<br>test between October 1, 2018 and<br>April 30, 2019 |                                                        |  |
|                        | ≥365 days of continuous enrollment at time of diagnosis                                                                                       |                                                                                                                            |                                                        |  |
| Exclusion              | Initial COVID-19 test result pending or inconclusive at dataset creation                                                                      | Initial influinconclusiv                                                                                                   | ienza result pending or ve at dataset creation         |  |
| criteria               | Coinfection with other respiratory virus                                                                                                      |                                                                                                                            |                                                        |  |
| Selection              | All eligible members will be selected                                                                                                         |                                                                                                                            |                                                        |  |

# **Primary Outcomes: Thromboembolic Events (All Aims)**



#### **Rationale for Focus on Validated Diagnostic Coding Algorithms**

- Minimize misclassification of study outcomes
  - Reduce likelihood of biased estimates of associations between exposures and outcomes
  - Have confidence that ascertained outcomes = true events
- Validated algorithm → majority of events confirmed via medical record review
  - Preliminary evaluation indicates similar numbers of events with ICD-10-CM diagnoses
- Algorithm's accuracy may differ by database
  - Due to differences in setting, practice approaches, patients, disease incidence
  - Algorithms may not be transportable

## Study Outcome Considerations: No Validated Thrombotic Algorithms in COVID-19

- Performance of ICD-10-CM thrombosis algorithms unknown in COVID-19
- Thrombotic events may not be primary hospital discharge diagnosis in COVID-19
  - COVID-19 may be principal hospital discharge diagnosis
  - Arterial, venous thrombotic events may be secondary diagnoses
  - Will need to consider primary or secondary hospital discharge diagnoses
- Clinicians may empirically treat venous thromboembolism with anticoagulation therapy but no confirmatory diagnosis
  - COVID-19 precautions, need for prone positioning limit access to diagnostic imaging

## **Secondary Outcomes (All Aims)**

1. Ambulatory, ED, or hospital discharge ICD-10-CM of arterial thrombosis (AMI or stroke) or venous thromboembolism (DVT or PE)

2a. Arterial: Meet primary outcome or have ambulatory, ED, or hospital discharge ICD-10-CM of angina, TIA, PAD, or amputation

2b. **Venous**: Meet primary outcome or have ambulatory, ED or hospital discharge ICD-10-CM of venous thrombosis of device, implant, or graft

3. Meet primary outcome or dispensed thrombolytic therapy and/or therapeutic anticoagulation therapy during follow-up

4. Intracranial, upper/lower GI tract, or retroperitoneal bleeding

#### 5. Death (any cause)

# Definitions of Risk Factors for Thromboembolic Events (Aim 2)

| Category              | Risk Factor         | Definition                            |
|-----------------------|---------------------|---------------------------------------|
|                       | Obesity             | Body mass index >30 kg/m <sup>2</sup> |
|                       | Heart failure       | ICD-10-CM diagnosis codes             |
| Stasis of Circulation | Polycythemia        | Hemoglobin >16 gm/dL                  |
|                       | Older age           | Will explore different age thresholds |
|                       | Alcohol abuse       | ICD-10-CM diagnosis codes             |
|                       | Diabetes            | ICD-10-CM diagnosis codes or registry |
|                       | Hypertension        | ICD-10-CM diagnosis codes             |
| Endothelial injury    | Vascular disease    | ICD-10-CM diagnosis codes             |
|                       | Current tobacco use | Health factors data                   |
| Lunaraa gulahilitu    | Cancer              | ICD-10-CM diagnosis codes             |
| нурегсоадинаршту      | Pregnancy           | ICD-10-CM diagnosis codes             |

18

# **Data Elements (All Aims)**

| Demographic       | Clinical                         | Laboratory*         | Medication/Transfusions <sup>+</sup> |
|-------------------|----------------------------------|---------------------|--------------------------------------|
| Enrollment status | Hospitalization                  | Hemoglobin          | Anticoagulants                       |
| Age               | ICU admission, ventilation       | Platelet count      | Anti-platelet drugs                  |
| Sex               | Diabetes                         | PT/INR/PTT          | Oral contraceptives                  |
| Race              | Hypertension                     | D-dimer             | Estrogen replacement                 |
| Body mass index   | Vascular disease                 | Fibrinogen          | Testosterone replacement             |
| Location of care  | COPD / asthma                    | Ferritin            | Furosemide                           |
| Tobacco use       | Liver disease                    | CRP / ESR           | Morphine                             |
| Alcohol use       | Chronic kidney disease           | Procalcitonin       | Thrombolytic agents                  |
|                   | Malignancy                       | Factor V Leiden     | Blood transfusion                    |
|                   | Prior thromboembolism            | Factor VIII         | Immunoglobulin transfusion           |
|                   | Severity of illness at diagnosis | Antiphospholipid Ab |                                      |
|                   | Thrombophilia history            | ABO blood type      |                                      |

\* On or within +/- 7 days around index date; if multiple results available, will collect closest to index date \* Based on outpatient medication fills between 90 and 3 days prior to index date

# Data Analysis: Follow-up



# **Data Analysis**

| Aim   | Planned Statistical Analyses                                                                 |
|-------|----------------------------------------------------------------------------------------------|
|       | Characteristics of COVID-19 cohort                                                           |
|       | Calculate incidence rates (events/1000 persons-years) of thromboembolic events:              |
|       | Overall, by arterial and venous events                                                       |
| Aim 1 | • Stratify by age, sex, race, setting of diagnosis (ambulatory, hospital, nursing home)      |
|       | <ul> <li>Stratify by disease severity at diagnosis, prior thromboembolism history</li> </ul> |
|       | <ul> <li>Stratify by baseline anticoagulant use, anti-platelet use</li> </ul>                |
|       | Calculate incidence rate of death within 90 days of thromboembolism event                    |
| Aim 2 | Poisson regression: adjusted RRs (95% CIs) of events for risk factors                        |
|       | Compare characteristics between COVID-19 and influenza cohorts                               |
| Aim 3 | Poisson regression: adjusted RRs (95% CIs) of events in persons with COVID-19 vs. influenza  |
|       | • Stratify by disease severity, setting of diagnosis, prior thromboembolism history          |

# **Potential Study Limitations**

| Limitation                  | <b>Reasons Limitation May Occur</b>                                                                                        | Methods to Address                                                                                                                                                                                   |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Selection Bias              | <ul> <li>Variations in COVID-19 testing by:</li> <li>Geography</li> <li>Calendar time</li> <li>Disease severity</li> </ul> | <ul> <li>Sensitivity analyses:</li> <li>Condition on geography</li> <li>Restrict to time when testing more available</li> <li>Stratify on severity, setting at diagnosis (e.g., hospital)</li> </ul> |
| Misclassification           | Lack of validation of ICD-10<br>diagnoses for thromboembolic<br>events                                                     | Potentially evaluate the PPV of diagnosis<br>code-based outcome algorithms via<br>chart review in small samples                                                                                      |
| Uncontrolled<br>Confounding | Incomplete data on race, tobacco, alcohol in some data sources                                                             | <ul><li>Sensitivity analyses:</li><li>Assess effects of unmeasured confounders on results</li></ul>                                                                                                  |

## **Project Status**

- Protocol is complete
- Establishing collaborations with multiple Sentinel Data Partners
  - Integrated delivery system, claims partners
  - Increase sample size, enhance generalizability, permits evaluation of lab data
  - Allows for limited chart review to confirm PPVs of ICD-10-based outcomes

#### • Working with Reagan-Udall Foundation

– Promote parallel analyses, enhance scientific validity

## Acknowledgements: Sentinel COVID-19 Coagulopathy Working Group

#### • University of Pennsylvania:

- Dena M. Carbonari, MS
- Sean Hennessy, PharmD, PhD
- Rebecca Hubbard, PhD
- Allyson M. Pishko, MD, MSCE
- Sentinel Operations Center:
  - Jeffrey Brown, PhD
  - Noelle M. Cocoros, DSc, MPH
  - Meighan Rogers Driscoll, MPH
  - Maria E. Kempner, BA
  - Jenice Ko, BS

#### • US Food & Drug Administration:

- Sarah K. Dutcher, PhD
- Silvia Perez-Vilar, PharmD, PhD
- Brian Kit, MD
- Funding source:
  - US FDA
    - Contract 75F40119D10037
    - Task order 75F40119F19001



# **Extra Slides**

## **Sentinel COVID-19 Natural History Master Protocol**

- Provides approaches to identify COVID-19 patients in the Sentinel System
- Delineates variables relevant to such analyses
  - Feasibility of collection of these variables within Sentinel's Data Partners
  - Proposed code lists for variables
- Considers potential limitations of methods, approaches to address
  - Biases (selection, misclassification, protopathic)
  - Unmeasured confounding variables
  - Generalizability

https://www.sentinelinitiative.org/methods-data-tools/methods/master-protocol-development-covid-19-natural-history

### Published Estimates on the Incidence of Thromboembolic Events

| Reference    | Setting              | No. COVID-19<br>Patients         | % Administered<br>DVT Prophylaxis<br>at Admission | Outcome Evaluated        | Incidence<br>Of Events |
|--------------|----------------------|----------------------------------|---------------------------------------------------|--------------------------|------------------------|
| Klok         | Netherlands          | 184 in ICU                       | 100%                                              | Arterial or venous clots | 31 (16.8%)             |
| Lodigiani    | Italy                | 48 in ICU                        | 100%                                              | VTE events               | 8 (16.7%)              |
| Ziehr        | USA                  | 66 in ICU<br>(all on ventilator) | Not Reported                                      | VTE events               | 11 (16.7%)             |
| Llitjos      | France               | 26 in ICU                        | 100%                                              | DVT                      | 13 (50.0%)             |
| Cui          | China                | 81 in ICU                        | 0%                                                | VTE events               | 20 (24.7%)             |
| Poissy       | France               | 107 in ICU                       | Not Reported                                      | PE                       | 22 (20.6%)             |
| Goyal        | USA                  | 393 hospitalized                 | Not Reported                                      | VTE events               | 13 (3.3%)              |
| Cattaneo     | Italy                | 388 hospitalized                 | 100%<br>(enoxaparin 40 mg QD)                     | DVT                      | 0 (0.0%)               |
| Al Samkari   |                      | 100 hospitalized                 | 07 20/                                            | VTE                      | 19 (4.8%)              |
| AI-SaIIIKaII | USA 400 hospitalized | 97.5%                            | Arterial thrombosis                               | 11 (2.8%)                |                        |

DVT=deep vein thrombosis; ICU=intensive care unit; PE=pulmonary embolism; VTE=venous thromboembolic

## Validation of Acute MI Algorithms in Sentinel

| Setting                                                                                                                                              | ICD-9-CM         | Algorithm                           | Positive Predictive Value<br>% (95% CI) |
|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------------------------|-----------------------------------------|
| <ul> <li>Mini-Sentinel Distributed Database<sup>1</sup></li> <li>HealthCore</li> <li>HMO Research Network</li> <li>Humana</li> <li>Kaiser</li> </ul> | 410.x0<br>410.x1 | Hospital Discharge Dx:<br>Primary   | 86% (79 – 91%)                          |
| Sentinel Distributed Database <sup>2</sup>                                                                                                           | 410.x0           | Hospital Discharge Dx:<br>Primary   | 93% (78 – 99%)                          |
| • 13 Data Partners                                                                                                                                   | 410.x1           | Hospital Discharge Dx:<br>Secondary | 88% (72 – 97%)                          |

<sup>1</sup> Cutrona SL. *Pharmacoepidemiol Drug Saf* 2013;22:40-54. Validation performed in random sample of members from specified Data Partners. <sup>2</sup> Ammann EM. *Pharmacoepidemiol Drug Saf* 2018;27:398-404. Validation performed among members administered immunoglobulin therapy.

## Validation of Acute Stroke Algorithms in Sentinel

| Setting                 | ICD-9-CM                                     | Algorithm                           | Positive Predictive Value<br>% (95% CI) |
|-------------------------|----------------------------------------------|-------------------------------------|-----------------------------------------|
| HealthCore <sup>1</sup> | 433.x1<br>434.x1<br>436.x4<br>437.1x, 437.9x | Hospital Discharge Dx:<br>Primary   | 86% (79 – 91%)                          |
| TennCare <sup>2</sup>   | 433.x1<br>434<br>436                         | Hospital Discharge Dx:<br>Primary   | 80% (74 – 85%)                          |
| Sentinel Distributed    | 433.x1                                       | Hospital Discharge Dx:<br>Primary   | 60% (37 – 84%)                          |
| • 13 Data Partners      | 434.xx<br>436                                | Hospital Discharge Dx:<br>Secondary | 42% (28 – 57%)                          |

<sup>1</sup> Wahl PM. *Pharmacoepidemiol Drug Saf* 2010;19:596-603. Validation performed in members administered selective COX-2 inhibitors or non-OTC NSAIDs.

<sup>1</sup> Roumie CL. *Pharmacoepidemiol Drug Saf* 2008;17:20-26. Validation performed in random sample of TennCare members.

<sup>3</sup> Ammann EM. *Medicine* 2018;97:8(e9960). Validation performed among members administered immunoglobulin therapy.

## Validation of Acute DVT/PE Algorithms in Sentinel

| Setting                                                                                                                                                | ICD-9-CM                       | Algorithm                                      | Positive Predictive<br>Value<br>% (95% CI) |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|------------------------------------------------|--------------------------------------------|
| <ul> <li>Mini-Sentinel Distributed Database<sup>1</sup></li> <li>Aetna</li> <li>HealthCore</li> <li>Humana</li> <li>Optum</li> <li>TennCare</li> </ul> | 415.1x<br>453.x                | Hospital Discharge Dx:<br>Primary or Secondary | 65%<br>(95% Cl not reported)               |
| Sentinel Distributed Database <sup>2</sup>                                                                                                             | 415.1x<br>451.1x               | Hospital Discharge Dx:<br>Primary              | 90% (73 – 98%)                             |
| • 13 Data Partners                                                                                                                                     | 453.1, 453.2,<br>453.4x, 453.9 | Hospital Discharge Dx:<br>Secondary            | 80% (28 – 99%)                             |

<sup>1</sup> Yih Wk. *Vaccine* 2016;34:172-178. Validation performed among female members aged 9-26 years administered quadrivalent HPV vaccine. <sup>2</sup> Ammann EM. *Medicine* 2018;97:8(e9960). Validation performed among members administered immunoglobulin therapy.