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Missing data in confounding factors are frequent
• Examples: Labs (e.g., HbA1c), Vitals (e.g., ejection fraction), Physician assessments (e.g., ECOG)

• Mechanisms: Missing completely at random (MCAR), at random (MAR) and not at random (MNAR)

• Patterns: Monotone, Non-monotone

Unresolved challenges for causal inference
• In an empirical study, it is usually unclear which of the missing data mechanisms and patterns are dominating.

• How do any of these mechanisms relate to bias in a given RWD study, given the strength of correlations between exposure, 
covariates and outcomes in high-dimensional covariate spaces (e.g., database linkages)?

Knowledge Gaps and Objectives

• Rubin DB. Inference and Missing Data. Biometrika. 1976;63(3):581-592. doi:10.2307/2335739 
• Mitra, R., McGough, S.F., Chakraborti, T. et al. Learning from data with structured missingness. Nat Mach Intell 5, 13–23 (2023)
• Mohan K, Pearl J, Tian J. Graphical models for inference with Missing data. In: Proceedings of the 26th International Conference on Neural 

Information Processing Systems - Volume 1. NIPS’13. Curran Associates Inc.; 2013:1277-1285. 

Objectives

• Develop a framework and tools to assess the structure of missing data processes in EHR studies

• Connect this with the most appropriate analytical approach, followed by sensitivity analyses
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Data sources
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Identify the most 
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assess missing 
confounder data in EHR 
studies and develop a 

Toolkit to routinely 
implement these methods 

in future studies

Testing site 1

EHR

Test Toolkit and 
compare  

performance with 
development site 

Toolkit deployment

Sentinel Causal Inference Work Stream

Claims

Deterministic 
linkage
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Assumed causal missingness structures

Causal diagrams/M-graphs provide a more natural 
way to understand the assumptions regarding 
missing (confounder) data for a given research 
question

• Choi J, Dekkers OM, le Cessie S. A comparison of different methods to handle missing data in the context of 
propensity score analysis. Eur J Epidemiol. 2019 Jan;34(1):23-36. 

• Mohan K, Pearl J, Tian J. Graphical models for inference with Missing data. In: Proceedings of the 26th 
International Conference on Neural Information Processing Systems - Volume 1. NIPS’13. Curran Associates 
Inc.; 2013:1277-1285. 

Missing completely at random (MCAR) Missing at random (MAR)

Missing not at random 1 (MNARunmeasured) Missing not at random 2 (MNARvalue)



| 6Sentinel Initiative

Absolute standardized mean 
difference (ASMD)

P-value Hoteling/Little

Purpose Comparison of distributions between patients with vs w/o observed 
value of the partially observed covariate

Example value ASMD = 0.1 p-value <0.001

Interpretation <0.1*: missingness is not associated 
with other observed covariates 
may be completely at random

>0.1*: missingness differs between 
patients and observed covariates 
can explain difference

* Equivalent to propensity score-based 
balance measures (Austin PC, Multivariate 
Behavioral Research, 46:3, 399-424 
(2011)

Low p-values:
Indicate differences in covariate 
distributions and null hypothesis would be 
rejected (≠MCAR)

Hotelling H. Ann Math Stat. 2(3):360-378. (1931) 
& Little RJA. J Am Stat Assoc. 83(404):1198-
1202. doi:10.2307/2290157 (1988)

Empirical Diagnostics to Characterize Missingness Mechanisms

Group 1 Diagnostics
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Absolute standardized mean 
difference (ASMD)

P-value Hoteling/Little AUC (are under the receiver 
operating curve)

Purpose Comparison of distributions between patients with vs w/o observed 
value of the partially observed covariate

Assessing the ability to 
predict missingness based on observed 
covariates

Example value ASMD = 0.1 p-value <0.001 AUC = 0.5

Interpretation <0.1*: missingness is not associated 
with other observed covariates 
may be completely at random

>0.1*: missingness differs between 
patients and observed covariates 
can explain difference

* Equivalent to propensity score-based 
balance measures (Austin PC, Multivariate 
Behavioral Research, 46:3, 399-424 
(2011)

Low p-values:
Indicate differences in covariate 
distributions and null hypothesis would be 
rejected (≠MCAR)

Hotelling H. Ann Math Stat. 2(3):360-378. (1931) 
& Little RJA. J Am Stat Assoc. 83(404):1198-
1202. doi:10.2307/2290157 (1988)

Values around 0.5:
Indicate random prediction (MCAR)

Values meaningfully above 0.5 indicate 
stronger correlations between covariates 
(which can be determined!) and 
missingness (~MAR)

Empirical Diagnostics to Characterize Missingness Mechanisms

Group 1 Diagnostics Group 2 Diagnostics
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Absolute standardized mean 
difference (ASMD)

P-value Hoteling/Little AUC (are under the receiver 
operating curve)

Log HR (missingness indicator)

Purpose Comparison of distributions between patients with vs w/o observed 
value of the partially observed covariate

Assessing the ability to 
predict missingness based on observed 
covariates

Check whether missingness of a covariate 
is associated with the outcome 
(differential missingness)

Example value ASMD = 0.1 p-value <0.001 AUC = 0.5 log HR = 0.1 (0.05 to 0.2)

Interpretation <0.1*: missingness is not associated 
with other observed covariates 
may be completely at random

>0.1*: missingness differs between 
patients and observed covariates 
can explain difference

* Equivalent to propensity score-based 
balance measures (Austin PC, Multivariate 
Behavioral Research, 46:3, 399-424 
(2011)

Low p-values:
Indicate differences in covariate 
distributions and null hypothesis would be 
rejected (≠MCAR)

Hotelling H. Ann Math Stat. 2(3):360-378. (1931) 
& Little RJA. J Am Stat Assoc. 83(404):1198-
1202. doi:10.2307/2290157 (1988)

Values around 0.5:
Indicate random prediction (MCAR)

Values meaningfully above 0.5 indicate 
stronger correlations between covariates 
(which can be determined!) and 
missingness (~MAR)

MCAR: No association in neither crude nor 
adjusted model

MAR: Association in crude but not 
adjusted model

MNAR: If there was a meaningful 
difference also after comprehensive 
adjustment (log HR), this may be 
indicative of differential MNAR 
scenarios

Empirical Diagnostics to Characterize Missingness Mechanisms

Group 1 Diagnostics Group 2 Diagnostics Group 3 Diagnostics
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Diagnostics Results
• Large scale simulation revealed characteristic patterns of the diagnostic parameters matched to missing data structure

• The observed diagnostic pattern of a specific study will give insights into the likelihood of underlying missingness structures

Expected parameter 
constellations

ASMD
(Absolute standardized 

mean difference)
P-value 

Hoteling/Little

AUC 
(are under the 

receiver operating curve)
Log HR 

(crude)
Log HR 
(adjusted)

MCAR 0.05 0.5 0.50 -0.01 0.00

MAR 0.20 <.001 0.58 0.53 0.00

MNARunmeasured 0.09 0.02 0.54 0.43 0.31

MNARvalue 0.06 0.10 0.53 0.04 0.10

Group 1 Diagnostics Group 2 Diagnostics Group 3 Diagnostics
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Diagnostics Results
• Large scale simulation revealed characteristic patterns of the diagnostic parameters matched to missing data structure

• The observed diagnostic pattern of a specific study will give insights into the likelihood of underlying missingness structures

Expected parameter 
constellations

ASMD
(Absolute standardized 

mean difference)
P-value 

Hoteling/Little

AUC 
(are under the 

receiver operating curve)
Log HR 

(crude)
Log HR 
(adjusted)

MCAR 0.05 0.5 0.50 -0.01 0.00

MAR 0.20 <.001 0.58 0.53 0.00

MNARunmeasured 0.09 0.02 0.54 0.43 0.31

MNARvalue 0.06 0.10 0.53 0.04 0.10

Let’s have a look at some EHR examples:

Covariate
ASMD

(min to max) P-value AUC 
Log HR 

(crude, 95% CI)
Log HR 

(adjusted, 95% CI)

EGFR (cancer biomarker) 0.24 (0.01 to 0.49) <.001 0.63 0.06 (-0.03 to 0.15) -0.01 (-0.10 to 0.09)

Group 1 Diagnostics Group 2 Diagnostics Group 3 Diagnostics
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Diagnostics Results
• Large scale simulation revealed characteristic patterns of the diagnostic parameters matched to missing data structure

• The observed diagnostic pattern of a specific study will give insights into the likelihood of underlying missingness structures

Expected parameter 
constellations

ASMD
(Absolute standardized 

mean difference)
P-value 

Hoteling/Little

AUC 
(are under the 

receiver operating curve)
Log HR 

(crude)
Log HR 
(adjusted)

MCAR 0.05 0.5 0.50 -0.01 0.00

MAR 0.20 <.001 0.58 0.53 0.00

MNARunmeasured 0.09 0.02 0.54 0.43 0.31

MNARvalue 0.06 0.10 0.53 0.04 0.10

Let’s have a look at some EHR examples:

Covariate
ASMD

(min to max) P-value AUC 
Log HR 

(crude, 95% CI)
Log HR 

(adjusted, 95% CI)

EGFR (cancer biomarker) 0.24 (0.01 to 0.49) <.001 0.63 0.06 (-0.03 to 0.15) -0.01 (-0.10 to 0.09)

ECOG (performance status) 0.03 (0.00 to 0.07) 0.78 0.51 -0.06 (-0.16 to 0.03) -0.06 (-0.16 to 0.03)

Group 1 Diagnostics Group 2 Diagnostics Group 3 Diagnostics
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Diagnostics Results
• Large scale simulation revealed characteristic patterns of the diagnostic parameters matched to missing data structure

• The observed diagnostic pattern of a specific study will give insights into the likelihood of underlying missingness structures

Expected parameter 
constellations

ASMD
(Absolute standardized 

mean difference)
P-value 

Hoteling/Little

AUC 
(are under the 

receiver operating curve)
Log HR 

(crude)
Log HR 
(adjusted)

MCAR 0.05 0.5 0.50 -0.01 0.00

MAR 0.20 <.001 0.58 0.53 0.00

MNARunmeasured 0.09 0.02 0.54 0.43 0.31

MNARvalue 0.06 0.10 0.53 0.04 0.10

Let’s have a look at some EHR examples:

Covariate
ASMD

(min to max) P-value AUC 
Log HR 

(crude, 95% CI)
Log HR 

(adjusted, 95% CI)

EGFR (cancer biomarker) 0.24 (0.01 to 0.49) <.001 0.63 0.06 (-0.03 to 0.15) -0.01 (-0.10 to 0.09)

ECOG (performance status) 0.03 (0.00 to 0.07) 0.78 0.51 -0.06 (-0.16 to 0.03) -0.06 (-0.16 to 0.03)

PD-L1 (cancer biomarker) 0.06 (0.02 to 0.34) <.001 0.52 0.12 (0.01 to 0.23) 0.11 (-0.00, 0.22)

Group 1 Diagnostics Group 2 Diagnostics Group 3 Diagnostics
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IR. Stat Med. 2018 Jul 10;37(15):2338-2353

Sensitivity Analysis
• Missing Not At Random (MNARvalue) typically leads to strongest bias

• Since key diagnostic parameters remain unobservable, we cannot determine the amount of bias caused by MNARvalue

• Sensitivity tipping point analysis: How sensitive are results to a departure from MAR?

δ = difference of covariate distn in the 
missing and complete cases

Example: difference in mean PD-L1 
expression (%)
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Toolkit - R Package
Easy implementation of routine structural missing data

investigations (smdi)

• Selected functions:
o smdi_diagnose() – flagship function that will return all three 

group diagnostics evaluated in simulation study

o smdi_summarize() & smdi_vis() – easy and quick 
visualization of proportion missingness as (variables can be 
specified; if not specified, all variables with NA will be 
displayed)

o More…

• Disclaimer: Package is currently in beta testing and will be 
validated at testing site

janickweberpals.gitlab-pages.partners.org/smdi

https://janickweberpals.gitlab-pages.partners.org/smdi
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Take Home Message

Outline your 
assumptions

Integrate routine 
diagnostics already at 

study design level

Check robustness of 
assumptions in 

sensitivity analyses
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