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Disclaimer 

The views expressed in this presentation represent those of 
the presenters and do not necessarily represent the official 
views of the U.S. FDA.
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• Goal: improve safety surveillance using observational data
• Active Risk Identification and Analysis (ARIA) system:

Motivation

Image courtesy of Michael Nguyen

Analytic 
Tools

Common 
Data 

Model
ARIA

Electronic claims data

Parameterized, re-usable tools and computable algorithms
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Motivation

Slide courtesy of Michael Nguyen

Serious Safety 
Concern

Sentinel ARIA 
Sufficient?

Sentinel ARIA Analysis

Postmarket Required Study 
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NO

YES

Related ARIA Study

Observational 

Study

When is the ARIA Process Needed?

ARIA must be considered before 
a sponsor PMR can be issued
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• ARIA is sufficient when:
• Outcome & exposure of interest, covariates can be identified from data
• Methods can assess exposure-related risk with satisfactory precision

• 2016—2018: ARIA insufficient for 45 of 89 drug/outcome pairs
• Inadequate identification of outcome: 38 pairs

ARIA Sufficiency

Example ARIA sufficient* outcomes:
• GI bleeding
• Heart failure
• Lymphoma
• Major adverse cardiac events (MACE)
• Myocardial infarction
• Multiple sclerosis relapse
• Non-melanoma skin cancer
• Seizure
• Stroke

Example ARIA insufficient* outcomes:
• Acute pancreatitis
• Anaphylaxis
• Drug-induced liver injury
• Fatal MACE
• Malignancies (several)
• Nerve injury
• Suicide or suicidal ideation

*Sufficiency is highly dependent on the scientific question and regulatory context
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• Our focus: outcome identification (phenotyping)
• Key considerations:

• Gold-standard data creation

• Feature engineering

• Model development

• Model evaluation

• Challenge: traditional chart review expensive (in time and resources)
• Approach: a general framework for scalable phenotyping algorithms
• Case studies: acute pancreatitis, anaphylaxis, severe COVID-19

Improving ARIA Sufficiency
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Can a phenotyping effort succeed for the outcome of interest?
• Key considerations:

• Downstream use of the predicted outcome 
• Ambiguity of the clinical condition (clinical complexity)
• Ambiguity arising from healthcare data (data complexity)

Assessing Fitness for Purpose

Clinical complexity

Data complexity

Low

Low

High

High
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• Clinical complexity:
• Diagnosis complex, relies on subjective assessment of signs 

and symptoms
• 20% of charts at KPWA identified as “difficult” or discordant 

across two MD reviewers
• Event often does not occur under direct observation

• Data complexity:
• Relevant information captured in chart notes

Clinical and Data Complexity: Anaphylaxis

Clinical complexity
Low

Low

High

High

Anaphylaxis = “challenging”

Data complexity
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• Clinical complexity:
• Established events criteria include pain, imaging results

• Data complexity:
• Relevant information captured in ICD-10 diagnosis 

code and serum lipase laboratory value*

Clinical and Data Complexity: Acute Pancreatitis

*Floyd et al. (2022). Validation of acute pancreatitis among adults in an integrated healthcare system. Epidemiology.

Clinical complexity
Low

Low

High

High

AP = “moderate”

Data complexity
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• Goal: identify true cases and controls for algorithm training
• Challenge: limited resources (time, personnel)
• Best practices:

• Chart abstraction guidelines reflect clinical diagnostic criteria
• Clinician oversight of chart abstractors
• Dual review of samples to assess replicability
• Use K-fold cross-validation

• Future work:
• Can NLP-assisted methods reduce review time?
• Can surrogate outcomes be incorporated in model training?

Gold-standard Data Creation 
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• Goal: identify useful features from the EHR
• Challenges:

• Limited resources (time, personnel)
• Local vocabulary reduces generalizability

• Best practices:
• Incorporate clinical and domain knowledge
• Engineer many features
• Consider manual and automated approaches

• Future work:
• Can automated approaches capture all 

relevant relationships?
• Automated approaches with acute outcomes?

Feature Engineering

Image courtesy of David Carrell
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• Goal: construct a useful prediction model
• Challenges:

• Performance constrained by clinical and data complexity

• Evaluation requires gold-standard outcomes

• Best practices:
• Incorporate domain knowledge

• Consider a large, diverse set of candidate prediction 
algorithms (including machine learning)

• Evaluate performance using K-fold cross-validation

• Consider many performance metrics

• Final algorithm choice guided by downstream performance, 
replicability, generalizability

• Future work:
• Under what conditions can models be transported to new 

settings without additional gold-standard evaluation?

Model Development and Evaluation

Image courtesy of Susan Gruber
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Selected Results
Predicting Anaphylaxis

Carrell et al., American Journal of Epidemiology (accepted)

Predicting Symptomatic COVID-19
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All aspects of phenotyping can be improved by
• Considering data and clinical complexity
• Incorporating domain knowledge
• Using a wide variety of tools (including machine learning), with proper evaluation

Our framework provides guidelines for fully incorporating EHR data into phenotyping analyses

Closing Thoughts
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Thank You

Brian Williamson
Assistant Investigator, Biostatistics Division

Kaiser Permanente Washington Health Research Institute

Contact: brian.d.williamson@kp.org
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